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1. Introduction

One of the most important quantities for testing the Standard Model or its extensions

is the sine of the effective leptonic weak mixing angle sin2 θ
lept
eff . In the global fit of the

Standard Model to all relevant electroweak data, the effective leptonic weak mixing angle

has a strong impact on indirect constraints on MH. It can be defined through the effective

vector and axial-vector couplings, vl and al, of the Z boson to leptons (l) at the Z boson

pole. Writing the Z boson-lepton vertex as Γ[Zl+l−] = i lγµ(vl + alγ5)l Zµ, one obtains

sin2 θlept
eff =

1

4

(

1 + Re
vl

al

)

. (1.1)

Experimentally, sin2 θ
lept
eff is derived from various asymmetries measured around the Z

boson peak at e+e− colliders after subtraction of QED effects. It can also be determined
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from asymmetries measured at center-of-mass energies away from the Z pole, requiring

a theoretical extrapolation in order to match it to sin2 θ
lept
eff on the Z pole. The current

experimental accuracy, sin2 θlept
eff = 0.23147 ± 0.00017 [1], could be improved by an order

of magnitude at a future high-luminosity linear collider running in a low-energy mode at

the Z boson pole (GigaZ) [2]. This offers the prospect for highly sensitive tests of the

electroweak theory [3], provided that the accuracy of the theoretical prediction matches

the experimental precision.

Typically, the theoretical prediction of sin2 θlept
eff within the Standard Model is given in

terms of the following input parameters: the fine structure constant α, the Fermi constant

Gµ, the Z-boson mass MZ and the top-quark mass mt (and other fermion masses whenever

they are numerically relevant). The W -boson mass MW is calculated from the Fermi

constant, which is precisely derived from the muon decay lifetime. As a consequence, the

computation of sin2 θlept
eff involves two major parts: the radiative corrections to the relation

between Gµ and MW, and the corrections to the Z-lepton vertex form factors. The latter

can be incorporated into the quantity κ = 1 + ∆κ, defined in the on-shell scheme,

sin2 θlept
eff =

(

1 − M2
W/M2

Z

)

(1 + ∆κ) , (1.2)

At tree-level, ∆κ = 0 and the sine of the effective mixing angle is identical to the sine of

the on-shell weak mixing angle sin2 θW ≡ sW = 1 − M2
W/M2

Z. The quantity ∆κ is only

weakly sensitive to MW.

For the computation of the W -boson mass, the complete electroweak two-loop correc-

tions, including partial higher-order corrections, have been carried out in Ref. [4 – 7]. In

this report, the calculation of the corresponding contributions for the form factor ∆κ and

combined predictions for sin2 θ
lept
eff will be discussed.

The quantum corrections to sin2 θ
lept
eff have been under extensive theoretical study over

the last two decades. The one-loop result [8, 9] involves large fermionic contributions from

the leading contribution to the ρ parameter, ∆ρ, which is quadratically dependent on the

top-quark mass mt, resulting from the top-bottom mass splitting [10]. The correction ∆ρ

enters both in the computation of MW from the Fermi constant (for a discussion see e.g.

Ref. [4, 5]), as well as into the vertex correction factor ∆κ,

1 + ∆κ(α) = 1 +
c2
W

s2
W

∆ρ + ∆κrem(MH), (1.3)

with c2
W = M2

W/M2
Z, s2

W = 1−M2
W/M2

Z. The remainder part ∆κrem contains in particular

the dependence on the Higgs-boson mass, MH.

Beyond the one-loop order, resummations of the leading one-loop contribution ∆ρ

have been derived [11, 12]. They correctly take into account the terms of the form (∆ρ)2

and (∆α∆ρ). Here ∆α is the shift in the fine structure constant due to light fermions,

∆α ∝ log mf , which enters through the corrections to the relation between Gµ and MW,

since ∆κ = ∆κ(MW) is a function of MW. These resummation results have been confirmed

and extended by an explicit calculation of the pure fermion-loop corrections at O(α2)

(i.e. contributions containing two fermion loops) [13]. Recently, the leading three-loop
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Figure 1: Genuine fermionic two-loop Zl+l− vertex diagrams contributing to sin2 θ
lept
eff .

contributions to the ρ parameter of O(G3
µm6

t ) and O(G2
µαsm

4
t ) for large top-quark mass

[14], as well as O(G3
µM4

H) for large Higgs mass [15] have been computed.

Higher order QCD corrections to sin2 θ
lept
eff have been calculated at O(ααs) [16] and for

the top-bottom contributions at O(αα2
s ) [17] and O(αα3

s ) [18]. The O(αα2
s ) contributions

with light quarks in the loops can be derived from eqs. (29)–(31) in [19] and turn out to

be completely negligible. For the electroweak two-loop contributions, only partial results

using large mass expansions in the Higgs mass [20] and top-quark mass [21 – 23] have

been known previously. Concerning the expansion in mt, the formally leading term of

O(G2
µm4

t ) [21, 22] and the next-to-leading term of O(G2
µm2

tM
2
Z) [23] were found to be

numerically significant and of similar magnitude. Therefore, a complete calculation of

electroweak two-loop corrections to sin2 θ
lept
eff beyond the leading terms of expansions is

desirable.

As a first step in this direction, exact results have been obtained for the Higgs-mass

dependence (i.e. the quantity sin2 θ
lept
eff,sub(MH) ≡ sin2 θlept

eff (MH)−sin2 θlept
eff (MH = 65 GeV))

of the two-loop corrections with at least one closed fermion loop to the precision observ-

ables [13, 24]. They were shown to agree well with the previous results of the top-quark

mass expansion [25].

This paper discusses the complete computation of all electroweak two-loop corrections

to sin2 θ
lept
eff . In addition to the corrections to the prediction of the W -boson mass, which

have been analyzed before [4, 5], this includes all two-loop diagrams contributing to the

Zl+l− vertex on the Z pole. The diagrams can be conveniently divided into two groups;

fermionic contributions with at least one closed fermion loop, and bosonic contributions

without closed fermion loops. The genuine fermionic two-loop vertex diagrams are repre-

sented by the generic topologies in figure 1 and some examples of bosonic two-loop diagrams

are given in figure 2.

Results for the complete two-loop corrections have been presented first in Ref. [26, 27].
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(b)

W
W

W

H

(c)

γ,Z,W

(d)

γ,Z,W

Figure 2: Examples of bosonic two-loop Zl+l− vertex diagrams contributing to sin2 θ
lept
eff .

The results for the fermionic contributions have been confirmed in Ref. [28] and partial

results for the bosonic contributions were also obtained in Ref. [29]. This paper describes

the computational methods and analysis in more detail.

The paper is organized as follows. In section 2, the process e+e− → l+l− is analyzed

at next-to-next-to-leading order near the Z-boson pole and the O(α2) definition of the

sin2 θ
lept
eff is extracted. Furthermore the general strategies for the calculation of two-loop

contributions to the form factor ∆κ are discussed. Sections 3 and 4 explain the calculation

of the fermionic and bosonic two-loop diagrams in detail. For two-loop vacuum and self-

energy diagrams, well-established techniques exist and have been used for the computation

of MW [4 – 6]. The new part in this project are the two-loop vertex topologies, which have

been treated with two conceptually independent methods. A discussion of the numerical

results and remaining theoretical uncertainties due to unknown higher orders can be found

in section 5. In addition to the effective leptonic weak mixing angle, results are given also

for the effective weak mixing angle for other final state flavors, i.e. for couplings of the Z

boson to other fermions. Finally the implementation of our new results into the program

Zfitter is described.

2. Outline of the calculation

The two-loop corrections to the effective weak mixing angle sin2 θf
eff are part of the next-

to-next-to-leading order corrections to the process e+e− → f f̄ for center-of-mass energies

near the Z-boson mass,
√

s ≈ MZ. To set the scene for this calculation, a framework

for the next-to-next-to-leading order analysis of f f̄ production needs to be established.

Furthermore it has to be checked whether sin2 θf
eff is a well-defined, i.e. gauge-invariant

and finite, quantity at this order in perturbation theory.

– 4 –
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2.1 Definition of the effective weak mixing angle at next-to-next-to-leading or-

der

In higher-order calculations, occurrences of unstable intermediate particles need to be

treated carefully in order to preserve gauge-invariance and unitarity. Currently, the only

scheme proven to fulfill both requirements to all orders in perturbation theory is the pole

scheme [30 – 32]. It involves a systematic Laurent expansion around the complex pole

M2 = M2 − iMΓ associated with the propagator of the unstable particle with mass M

and width Γ. In the case of the process e+e− → f f̄ , e 6= f , near the Z pole, the amplitude

is written as

A[e+e− → f f̄ ] =
R

s −M2
Z

+ S + (s −M2
Z)S′ + . . . (2.1)

with

M2
Z = M

2
Z − iMZΓZ. (2.2)

Owing to the analyticity of the S-matrix, all coefficients of Laurent expansion, R,S, S′, . . .

and the pole location M2
Z are individually gauge-invariant, UV- and IR-finite, when soft

and collinear real photon emission is added.

The first term in (2.1) corresponds to a Breit-Wigner parametrization of the Z line

shape with a constant decay width. Experimentally, however, the gauge-boson mass is

determined based on a Breit-Wigner function with a running (energy-dependent) width,

A ∝ 1

s − M2
Z + isΓZ/MZ

. (2.3)

As a consequence of these different parameterizations, there is a shift between the experi-

mental mass parameter, MZ, and the mass parameter of the pole scheme, MZ, [33],

M
2
Z = M2

Z/(1 + Γ2
Z/M2

Z), (2.4)

amounting to MZ ≈ MZ − 34.1 MeV. In the following, barred quantities always refer to

pole scheme parameters.

The evaluation of higher order contributions in the pole scheme involves a simultaneous

expansion around the pole location and in the perturbation order α. Since near the Z pole

α, ΓZ and (s −M2
Z) are all of the same order, for a next-to-next-leading order calculation

R needs to be determined to O(α2), S only to O(α), while a tree-level result is sufficient

for S′.

The effective weak mixing angle is contained in the pole term residue R in (2.1). For

further use, the following notations for vertex and self-energy form factors are introduced,

Zµ

f

f

≡ Γ[Zµf f̄ ] ≡ zf,µ = iγµ(vf + afγ5), (2.5)

γµ

f

f

≡ Γ[γµf f̄ ] ≡ gf,µ = iγµ(qf + pfγ5), (2.6)

– 5 –
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V1,µ = γµ,Zµ V2,ν = γν,Zν
= Σµν

V1V2
, (2.7)

where the shaded blobs stand for one-particle irreducible loop contributions. It is also

convenient to define Zff̄ vertex form factors including the effect of Z-γ mixing,

ẑf,µ(k2) = iγµ

[

v̂f(k
2) + âf(k

2)γ5

]

≡ iγµ

[

vf(k
2) + af(k

2)γ5

]

− iγµ

[

qf(k
2) + pf(k

2)γ5

] ΣγZ(k2)

k2 + Σγγ(k2)

=
Zµ

f

f

+
Zµ γµ

f

f

+
Zµ γµγµ

f

f

+

+ . . . ,

(2.8)

where k is the momentum of the external Z line. With these definitions, the residue R up

to next-to-next-to-leading order can be cast into the form [31]

R = z(0)
e RZZ z

(0)
f +

[

ẑ(1)
e (M2

Z) z
(0)
f + z(0)

e ẑ
(1)
f (M2

Z)
] [

1 + Σ
(1)
γZ

′
(M2

Z)
]

+ ẑ(2)
e (M2

Z) z
(0)
f + z(0)

e ẑ
(2)
f (M2

Z) + ẑ(1)
e (M2

Z) ẑ
(1)
f (M2

Z)

− iMZΓZ

[

ẑ
(1)
e

′
(M2

Z) z
(0)
f + z(0)

e ẑ
(1)
f

′
(M2

Z)
]

,

(2.9)

RZZ = 1 − Σ
(1)
ZZ

′
(M2

Z)

− Σ
(2)
ZZ

′
(M2

Z) +
(

Σ
(1)
ZZ

′
(M2

Z)
)2

+ iMZΓZ Σ
(1)
ZZ

′′
(M2

Z)

− 1

M4
Z

(

Σ
(1)
γZ(M2

Z)
)2

+
2

M2
Z

Σ
(1)
γZ(M2

Z)Σ
(1)
γZ

′
(M2

Z).

(2.10)

Here the Lorentz indices have been suppressed. Based on the definition of sin2 θ
lept
eff in

eqs. (1.1),(1.2), the two-loop result of the effective weak mixing angle is derived from R as

sin2 θf
eff ≡

(

1 − M
2
W

M
2
Z

)

Re
{

1 + ∆κf
Z(M2

Z)
}

=

(

1 − M
2
W

M
2
Z

)

Re

{

1 +
â

(1)
f v

(0)
f − v̂

(1)
f a

(0)
f

a
(0)
f (a

(0)
f − v

(0)
f )

∣

∣

∣

∣

∣

k2=M2
Z

+
â

(2)
f v

(0)
f a

(0)
f − v̂

(2)
f (a

(0)
f )2 − (â

(1)
f )2 v

(0)
f + â

(1)
f v̂

(1)
f a

(0)
f

(a
(0)
f )2(a

(0)
f − v

(0)
f )

∣

∣

∣

∣

∣

k2=M2
Z

}

.

(2.11)

Since the pole scheme is based on a formal Laurent series of the physical amplitude, all

coefficients in the expansion and thus the effective weak mixing angle are manifestly gauge-

invariant and UV-finite. While the pole scheme formalism does not make any statement

about IR finiteness, it can be checked that eq. (2.11) is also a IR-safe quantity, i.e. all IR-

divergencies from photon exchange diagrams cancel. Similarly, collinear divergencies (or

– 6 –
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Sudakov factors for massive fermions) also cancel. This can be explained by the fact that

the QED contributions in the soft and collinear limits factorize from massive loop effects

and therefore drop out in the ratio of the vector and axial-vector form factor in eq. (1.1). At

the diagrammatic level, this cancellation of divergencies occurs not only between two-loop

diagrams, but also between 2-loop and products of 1-loop diagrams, for example

Z
Z γ =

Z
γ + finite, with ⊗ =

Z
Z . (2.12)

Experimentally, the effective weak mixing angle is determined from measurements of

forward-backward and left-right asymmetries of the process e+e− → f f̄ . The derivation

of sin2 θf
eff from these asymmetries requires the subtraction of effects from QED and QCD

corrections, s-channel photon exchange and γ-Z interference, off-shellness of the Z-boson

and box contributions. These non-resonant effects enter into the amplitude through the

next-to-leading term S in the pole expansion (2.1), and need to be computed up to one-

loop order. In order to relate the O(α2) result (2.11) for sin2 θf
eff to the value quoted by

the experimental analyses, it needs to be checked that the subtracted effects are consistent

with the pole scheme prescription.

In experimental studies, the program Zfitter [35] is widely used for prediction of

the contributions from QED and QCD corrections, s-channel photon exchange and γ-Z

interference, off-shellness of the Z-boson and box contributions. In Zfitter, the radiative

corrections to the process e+e− → f f̄ are parametrized by four form factors ρef , κe, κf ,

κef ,

A[e+e− → f f̄ ] = 4πiα
QeQf

s
γµ ⊗ γµ

+ i

√
2GµM2

Z

1 + iΓZ/MZ
I(3)
e I

(3)
f

1

s − M
2
Z + iMZΓZ

× ρef

[

γµ(1 + γ5) ⊗ γµ(1 + γ5)

− 4|Qe|s2
W κe γµ ⊗ γµ(1 + γ5)

− 4|Qf |s2
W κf γµ(1 + γ5) ⊗ γµ

+ 16|QeQf |s4
W κef γµ ⊗ γµ

]

(2.13)

Note that apart from the Z propagator, the gauge boson masses are defined according to

the running width prescription (un-barred symbols) instead of the pole scheme definition

(barred symbols). As a result the form factors κe, κf , κef can differ from the corresponding

form factors κe, κf , κef in the pole scheme. In the following, the relation between the two

sets of quantities will be worked out.

Zfitter includes all radiative corrections to e+e− → f f̄ consistently at the one-loop

level with some leading two-loop contributions. However, it has not been designed for a

complete next-to-next-to-leading order analysis and inconsistencies could occur at this level.

In Zfitter QED and QCD corrections are included via a convolution of the cross-section.

– 7 –
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They will be discussed in more detail later. The effects from s-channel photon exchange,

γ-Z interference, off-shellness of the Z-boson and massive (non-QED) box contributions

are taken into account by the formulae [35]

κef(s) = κe(s)κf(s) −
M2

Z − s

s

1

(a
(0)
e − v

(0)
e )(a

(0)
f − v

(0)
f )

×
[

q(1)
e q

(0)
f + q

(1)
f q(0)

e − p
(1)
f q(0)

e

v
(0)
f

a
(0)
f

− p(1)
e q

(0)
f

v
(0)
e

a
(0)
e

− q(0)
e q

(0)
f

Σ
(1)
γγ

s
+ boxes

]

,

(2.14)

κe,f(s) = κe,f
Z (s) +

M2
Z − s

s





q
(0)
e,f

a
(0)
e,f − v

(0)
e,f

p
(1)
f,e

a
(0)
f,e

+ boxes



 , (2.15)

κf
Z(s) = κf

Z(M2
Z) + (s − M2

Z)
â

(1)
f

′
(M2

Z) v
(0)
f − v̂

(1)
f

′
(M2

Z) a
(0)
f

a
(0)
f (a

(0)
f − v

(0)
f )

. (2.16)

From the pole expansion scheme one obtains in contrast to eqs. (2.14),(2.15)

κef(s) = κe(s)κf(s) −
M2

Z − iMZΓZ − s

s

1

(a
(0)
e − v

(0)
e )(a

(0)
f − v

(0)
f )

×
[

q(1)
e q

(0)
f + q

(1)
f q(0)

e − p
(1)
f q(0)

e

v
(0)
f

a
(0)
f

− p(1)
e q

(0)
f

v
(0)
e

a
(0)
e

− q(0)
e q

(0)
f

Σ
(1)
γγ

s
+ boxes

]

,

(2.17)

κe,f(s) = κe,f
Z (s) +

M2
Z − iMZΓZ − s

s





q
(0)
e,f

a
(0)
e,f − v

(0)
e,f

p
(1)
f,e

a
(0)
f,e

+ boxes



 . (2.18)

with

κf = κf

[

1 +
c2
W

s2
W

(

Γ2
W

M2
W

− Γ2
Z

M2
Z

)]

, (2.19)

κef = κef

[

1 +
c2
W

s2
W

(

Γ2
W

M2
W

− Γ2
Z

M2
Z

)]2

, (2.20)

Note that for next-to-next-to-leading accuracy it is not necessary to distinguish between

barred and un-barred symbols in the radiative corrections, since M
2
Z − M2

Z = O(α2).

From eqs. (2.14–2.18) one finds a difference for the derivation of the value of sin2 θf
eff

between Zfitter and the pole scheme:

sin2 θf
eff,Zfitter

= s2
W Re

{

κf
Z(M2

Z)
}

(2.21)

sin2 θf
eff,pole = s2

W Re
{

κf
Z(M2

Z)
}

= sin2 θf
eff,Zfitter

− ΓZ

MZ

q
(0)
f

a
(0)
e (a

(0)
f − v

(0)
f )

Im
{

p(1)
e

}

(2.22)
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with

s2
W =

(

1 − M
2
W

M
2
Z

)

= s2
W

[

1 +
c2
W

s2
W

(

Γ2
W

M2
W

− Γ2
Z

M2
Z

)]−1

. (2.23)

A similar deviation is found for the contribution of the form factors κef , κef between the

two schemes, which however cannot be expressed directly as a shift in sin2 θf
eff.

In principle, an additional discrepancy arises from the box contributions. The massive

boxes with Z and W boson exchange are included in Zfitter at the one-loop level, which is

sufficient for the next-to-next-to-leading order calculation in the pole scheme. Nevertheless,

in (2.18) an extra term stemming from the box contributions arises, which is proportional

to iMZΓZ. However, this term does not contribute to the squared matrix element since the

massive boxes have no absorptive part1.

Besides the contributions from s-channel photon exchange and boxes, the translation

between the measured asymmetries and the effective weak mixing angle requires the sub-

traction of QED and QCD corrections to the external fermions.

In the left-right asymmetry, the effect of final state QED and QCD corrections and

initial-final state QED interference cancels [36] up to next-to-next-to-leading order. Initial-

state QED radiation can be treated through convolution with a radiator function and has

been computed including the exact O(α2) corrections and higher-order leading contribu-

tions [37].

For the forward-backward asymmetry on the Z pole, the contribution from final-state

virtual and soft photon radiation vanishes for massless external fermions [36, 38, 12]. This

statement is valid up to corrections of the order O(α ∆Eγ/
√

s), where ∆Eγ is the soft-

photon cut-off, and terms of order O(α mf/
√

s), where mf is the final-state fermion mass.

Nevertheless, the complete one-loop contributions to final-state radiation are known and

taken into account in the extraction of the effective weak mixing angle [35]. The leading

effect of final-state fermion masses of O(α mf/
√

s) is also known and included [39], with

the remaining effects of order O(α2∆Eγ/
√

s), O(α2mf/
√

s), O(α m2
f/s) being numerically

negligible for the two-loop analysis for sin2 θf
eff under study here. Multiple hard final-state

photon radiation is taken into account by Monte-Carlo methods, see e.g. [40], with a small

numerical error. QCD final state effects are treated similarly to the QED contributions.

Interference of initial-final state photon radiation is also known up to order O(α)for

the forward-backward asymmetry. For sufficiently loose soft-photon cut, ∆Eγ
>∼ ΓZ, the

initial-final interference of soft and virtual photons at the Z pole is suppressed by the

width ΓZ of the Z boson [38, 12], so that the O(α2) contribution is effectively of order

O(α2ΓZ/MZ), i.e. beyond the next-to-next-to-leading order corrections under study in this

work. As before, initial-state radiation to the forward-backward asymmetry is included up

to O(α2), and partially beyond, by means of a convolution. Thus while a complete next-to-

next-to-leading order calculation of QED corrections to the forward-backward asymmetry is

1A special case is Bhabha scattering, f = e, where additional box and t-channel diagrams contribute.

For the purpose of this work, the subtraction of these contributions has not been analyzed in detail, justified

by the fact that the e+e− final state has a relatively small impact on the determination of the effective weak

mixing angle at present. In general, a more careful analysis of this process should be done in the future.
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not available, the present treatment of QED corrections is sufficient for a two-loop analysis

of sin2 θf
eff. Nevertheless, a complete O(α2) calculation of QED effects would be desirable.

In summary, it was found that the treatment of non-resonant contributions in Zfitter

is not consistent with the pole scheme at next-to-next-to-leading order. As a result, the

value of sin2 θf
eff needs to be corrected by a shift

s2
W δκf = − ΓZ

MZ

q
(0)
f

a
(0)
e (a

(0)
f − v

(0)
f )

Im
{

p(1)
e

}

. (2.24)

Numerically this shift amounts to s2
W δκf ≈ 1.5×10−6, well below the current experimental

error of 1.7 × 10−4 [1]. Therefore, this shift will be neglected in the analysis in section 5.

It was checked that a similar shift δκef in the form factor κef also leads to a negligible

numerical effect on sin2 θf
eff.

2.2 Renormalization

In this work the on-shell renormalization scheme is employed. It defines the mass param-

eters and coupling constants in close relation to physical observables. The renormalized

squared masses are defined as the real part of the propagator poles, while the external

fields are renormalized to unity at the position of the poles. The electromagnetic charge

is defined as the coupling strength of the electromagnetic vertex in the Thomson limit.

Explicit expressions for the necessary counterterms can be found in Ref. [5].

As described in the previous section, the computation of radiative corrections to the

effective weak mixing angle entails the calculation of loop contributions to the Zff̄ vertex.

In principle this involves a field renormalization for the Z boson, which appears as an exter-

nal particle of the vertex. Beyond one-loop order, the treatment of field renormalizations

for unstable particles proves to be not straightforward [41]. However, in the calculation of

sin2 θf
eff all occurrences of the Z boson field renormalization drop out between the vector

and axial-vector form factors in eq. (2.11). The independence of sin2 θf
eff on the total nor-

malization of the Z boson field strength can already be seen in eq. (1.1), where the effective

weak mixing angle is defined through the ratio of vertex form factors.

While the on-shell counterterms cancel the UV-divergencies in the virtual loop correc-

tions, all IR- and collinear divergencies drop out in the quantity sin2 θf
eff, as explained in

the previous section. The computation of the loop integrals is performed using dimensional

regularization. With this regularization scheme, special care is needed for the treatment

of the γ5 matrix in triangle fermion sub-loops. A practical solution to this problem will be

discussed in detail in section 3.3.

2.3 Preliminaries

Throughout the calculation of the two-loop corrections, the masses and Yukawa couplings

of all fermions but the top quark are neglected. The quark mixing matrix is assumed to

be diagonal. The vector and axial-vector components of the vertex corrections ẑf,µ were

projected out by contraction with suitable projection operators,

v̂f(k
2) =

1

2(2 − D)k2
Tr[γµ p/1 ẑf,µ(k2) p/2], (2.25)
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Z

Z

t
t

t
Figure 3: Example of a two-loop vertex diagram with a

top-quark sub-loop.

âf(k
2) =

1

2(2 − D)k2
Tr[γ5 γµ p/1 ẑf,µ(k2) p/2], (2.26)

where D is the space-time dimension and p1,2 are the momenta of the external fermions. As

a result, only scalar integrals remain after projection, but there are non-trivial structures

of scalar products in the numerators of the integrals, which require further treatment.

3. Calculation of fermionic two-loop vertex diagrams

The computation of the two-loop corrections to the effective weak mixing angle can be

divided into the calculation of the vertex loop contributions to the Zff̄ vertex and the

on-shell counterterms. The latter involve two-loop vacuum and self-energy contributions,

similar to the two-loop corrections to the W -boson mass [4, 5], while the former also contain

two-loop vertex topologies as a new complication. The generic two-loop vertex diagrams

with closed fermion loops are shown in figure 1.

The evaluation of the two-loop vertex contributions has been performed with two in-

dependent methods, in order to allow for a non-trivial check of the result. One method

is based on large mass expansions for the diagrams involving internal top quark propa-

gators and differential equations for the diagrams with only light fermions. The second

method makes use of numerical integrations derived from dispersion relations and Feynman

parameterizations.

3.1 Large top-quark mass expansions and analytical results

This approach divides the fermionic two-loop vertices in two categories: diagrams with

internal top quark lines and diagrams that have only light fermion lines.

Observing that the ratio x = M2
Z/m2

t ∼ 1/4 is a small number, the top-quark contri-

butions can be conveniently calculated by performing an expansion in x. The coefficients

of this large-mass expansion decompose completely into one-loop integrals and two-loop

vacuum integrals, for which analytical formulae are available in the literature [42].

An example of a typical scalar two-loop vertex diagram is shown in figure 3. The

expansion of this diagram reads

x
ζ(2)

3
+ x2

(

ζ(2)

12
− 5

36
+

1

12
log x

)

+ x3

(

ζ(2)

45
− 79

1200
+

1

20
log x

)

+ . . . (3.1)

Numerically this amounts to

0.1483 − 0.0081 − 0.0019 + 0.0003 + . . . (3.2)
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LF1(p2,m2) = p

m
Figure 4: Example of scalar prototype integral.

The thick line is massive with mass m, while the

thin lines represent massless propagators.

The excellent convergence of this series is typical for all diagrams that only contain neutral

current exchange in the loop. Diagrams involving charged current exchange converge more

slowly, which is an effect of the top-bottom mass splitting.

For this work, the large-mass expansion is executed up to order x5 = M10
Z /m10

t , which

yields an overall precision of 10−7, by far sufficient for practical purposes. This high

accuracy is a substantial improvement over the previous work in Ref. [23], where only the

first two terms in an expansion for large mt were calculated. Please note that the large-mass

expansion was only used for the two-loop vertex diagrams. The two-loop counterterms,

which in addition to the mass scales MW, MZ and mt also involve the parameter MH, were

evaluated using one-dimensional integral representations as in Refs. [43, 44]. In principle it

would also be possible to compute the counterterms using large-mass expansions. However,

since in general analytical results only exist for two-loop diagrams with up to two different

scales, this would require a simultaneous expansion in mt and MH, as in Ref. [23, 45].

In order to obtain a precise result, the one-dimensional integral representations are more

suitable instead.

The contributions with light fermions contain only the scales MW and MZ and are

therefore functions of only one dimensionless variable ω = M2
W/M2

Z. In this case it is pos-

sible to evaluate all contributions analytically using the differential equation method [47].

The final result is thus expressed through polylogarithms and generalized polylogarithms.

As a simple example consider the scalar integral in figure 4. Using integration-by-parts

identities [48], the following differential equation can be derived:

p2 d

dp2












=

1

2

p2

p2 + m2

(

(4 − D)(4 + 5
m2

p2
)













+ (10 − 3D)












− (2 − D)

[ ]

)

.

(3.3)

Here the thick lines represent massive propagators with mass m and the thin lines de-

note massless propagators. Besides the integral LF1 under study, the differential equation

involves a simpler scalar vertex integral and a vacuum integral on the right-hand side.

Feeding in analytical expression for these integrals from the literature [42, 49], the differ-

ential equation can be solved in terms of Nielsen’s polylogarithms [50]. The finite part of
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Figure 5: Scalar master integrals for diagrams with a light fermion loop. Thick lines indicate

massive gauge boson propagators, while thin lines correspond to light fermions of photons, which

are taken massless. The dot in the last diagram indicates that this propagator appears two times.

LF1 reads

LF1(p2,m2) = − Li2(−x)
(

−2 + 2 log(m2) + 3 log(−x) + log(1 + x)
)

+ 4Li3(−x) − S1,2(−x) +
1

2
log(1 + x)

×
[

2ζ2 − log(−x)
(

(−4 + 4 log(m2) + 2 log(−x) + log(1 + x)
)]

,

(3.4)

with x = p2/m2 and Nielsen’s polylogarithm S1,2 defined in Ref. [51]. The integral LF1

has also been calculated in Ref. [52]. However, some of the prototype integrals needed for

this project have not been known before and were computed for the first time in this work.

All integrals have been checked by different expansions in physical and unphysical regimes.

Several relevant integrals were also recently computed in Ref. [53]. However, their

results were presented in terms of generalized harmonic polylogarithms, which in general

involve numerical integrations for the numerical evaluation.

After performing the Dirac and Lorentz algebra for the relevant two-loop vertex di-

agrams, the result contains a large number of different scalar integrals with terms in the

numerator that cannot be cancelled against any of the propagators in the denominator.

Here it is advantageous to perform an algebraic reduction to a minimal set of master

integrals.

For the reduction to master integrals, the Laporta algorithm is used [54]. It is based

on integration-by-parts [48] and Lorentz identities [55], which establish linear relations

between scalar loop integrals. For a sufficiently large set of these relations, the linear

equation system can be solved in order to express the more complicated integrals with

non-trivial numerators in terms of a set of simple master integrals with unit numerators.

This reduction algorithm is implemented in the C++ library IdSolver [56], which allows

for a fast evaluation of linear systems involving several thousand equations.

The set of master integrals that appear within this calculation for the light fermion

contributions is summarized in figure 5. Analytical expressions were found by the differ-

ential equation method for all but the fourth topology in figure 5, which was evaluated

numerically.

3.2 Semi-numerical integrations

The second method employs numerical integrations for the master integrals. This technique

is based on a dispersion representation of the one-loop self-energy function B0,

B0(p
2,m2

1,m
2
2) =

∫ ∞

(m1+m2)2
ds

∆B0(s,m
2
1,m

2
2)

s − p2
, (3.5)
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p1 p2

pN-1pN

m1

mN-1

mNmN+1

p1

p1+p2

p2

1

23

4

5

→

xp1

p1+p2

p2+xp1

12
3

4

5

(a) (b)

Figure 6: (a) General representation of a two-loop scalar diagram with self-energy sub-loop. (b)

Reduction of triangle sub-loop to self-energy sub-loop by means of Feynman parameters.

∆B0(s,m
2
1,m

2
2) = (4πµ2)4−D Γ(D/2 − 1)

Γ(D − 2)

λ(D−3)/2(s,m2
1,m

2
2)

sD/2−1
, (3.6)

where D is the space-time dimension and λ(a, b, c) = (a− b− c)2 −4bc. Using this relation,

any scalar two-loop integral T with a self-energy sub-loop as in figure 6 (a) can be expressed

as [43]

TN+1(pi;m
2
i ) = −

∫ ∞

s0

ds ∆B0(s,m
2
N ,m2

N+1)

×
∫

d4q
1

q2 − s

1

(q + p1)2 − m2
1

· · · 1

(q + p1 + · · · + pN−1)2 − m2
N−1

.

(3.7)

Here the integral in the second line is a N -point one-loop function, and the integration over

s is performed numerically. While in principle it is also possible to introduce dispersion

relations for triangle sub-loops [44, 57], it is technically easier to reduce them to self-energy

sub-loops by introducing Feynman parameters [58],

[(q + p1)
2 − m2

1]
−1 [(q + p2)

2 − m2
2]
−1 =

∫ 1

0
dx [(q + p̄)2 − m2]−2

p̄ = x p1 + (1 − x)p2, m2 = xm2
1 + (1 − x)m2

2 − x(1 − x)(p1 − p2)
2.

(3.8)

This is indicated diagrammatically in figure 6 (b). The integration over the Feynman

parameters is also performed numerically. As a result, all master integrals for the vertex

topologies can be evaluated by at most 3-dim. numerical integrations.

The basic scalar two-loop integrals might contain UV- and IR-divergencies. These

need to be subtracted before the numerical integration can be carried out. An elegant

method to remove the divergencies is by subtracting a term from the integrand that can

be integrated analytically. This can be illustrated by the subtraction of UV divergencies

in the following example:

p1

p1+p2

p2

12

3

4

= 12

3

4

+

p1

p1+p2

p2

3

4

−
3

4

+









p1

p1+p2

p2

12

3

4









finite

.

(3.9)

– 14 –



J
H
E
P
1
1
(
2
0
0
6
)
0
4
8

The UV divergent part of the two-loop vertex diagram can be identified by the sum of the

same diagram with zero external momenta and the contribution from sub-loop renormal-

ization. The first term corresponds to a two-loop vacuum diagram for which analytical

formulae are available in the literature [42], while the second and third terms are products

of one-loop functions,

p1

p1+p2

p2

3

4

= B0

(

(p1 + p2)
2,m2

3,m
2
4

)

× B0

(

m2
4,m

2
1,m

2
2

)

, (3.10)

3

4

= B0

(

0,m2
3,m

2
4

)

× B0

(

m2
4,m

2
1,m

2
2

)

. (3.11)

Here the momentum scale m2
4 for the sub-loop counterterm was chosen to be able to handle

the case 0 = m1 = m2 6= m4. Subtracting these terms in the integrand of the two-loop

vertex integral results in a finite contribution, that can be integrated numerically,









p1

p1+p2

p2

12

3

4









finite

= −
∫ ∞

(m1+m2)2
ds ∆B0(s,m

2
1,m

2
2)

×
[

C0

(

(p1 + p2)
2, p2

1, p
2
2,m

2
3,m

2
4, s

)

− C0

(

0, 0, 0,m2
3,m

2
4, s

)

+
1

s − m2
4

[

B0

(

(p1 + p2)
2,m2

3,m
2
4

)

− B0

(

0,m2
3,m

2
4

)

]

]

.

(3.12)

For all other two-loop vertex master integrals, the divergent parts can be removed in a

similar fashion.

As before, the reduction of integrals with irreducible numerators to a small set of master

integrals is accomplished by using integration-by-parts and Lorentz-invariance identities,

which were implemented in an independent realization of the Laporta algorithm within

Mathematica.

3.3 Diagrams with fermion loop triangles and treatment of γ5

Diagrams with a fermion triangle sub-loop pose a special problem in conjunction with the

use of dimensional regularization. The fermion triangle loop involves terms like

Tr(γαγβγγγδγ5) = 4i εαβγδ , (3.13)

which cannot be extended to D dimensions simultaneously with the anti-commutation

rule {γµ, γ5} = 0. However, renormalizability of the Standard Model demands that terms

originating from expressions like eq. (3.13) are always UV-finite in any two-loop diagram.

As a consequence, the diagrams with a fermion triangle loop can be treated in two steps

[4]: First the complete diagrams are calculated using naive dimensional regularization with

anti-commuting γ5, where the trace in eq. (3.13) is zero. The finite contributions resulting
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Figure 7: Diagrams with fermion triangle sub-loops and soft-collinear divergencies.

in epsilon tensors are computed independently in four dimensions, and finally the two

contributions are added.

An additional complication arises from diagrams with internal photon lines and mass-

less external fermions, figure 7, which could give rise to soft-collinear divergencies. While

these soft and collinear divergencies are spurious singularities, thus dropping out in the

total result, they result in inconsistencies if dimensional regularization is used. In this case

the contributions involving epsilon tensors from the fermion triangle cannot be treated

consistently in four dimensions anymore.

In this work, the soft and collinear divergencies in these diagrams were instead regu-

lated with a photon mass. In the complete result, the limit of zero photon mass was taken

by means of an expansion, involving a careful treatment in the mixed Sudakov/threshold

regime. The result for the diagrams with two photons has been checked against Ref. [46].

3.4 Checks

The master integrals have been checked with published results where applicable [52, 53].

Some master integrals were tested by means of Mellin-Barnes representations, see also [59 –

61], and with a low-momentum expansion. In addition, complete diagrams were tested

with a low-momentum expansion. In the comparison of the two methods explained in the

previous sections, complete agreement was found.

4. Calculation of bosonic two-loop vertex diagrams

As explained in the previous chapter, the calculation of the bosonic two-loop corrections fall

into two categories, the bare vertex diagrams and the on-shell renormalization terms. The

computation of the renormalization counterterms has been established previously [5, 6],

whereas the calculation of the vertex diagrams will be addressed here. In our case, this

involves massive two-loop three-point function with one massive external leg and up to

three different mass scales.

Contrary to the fermionic corrections, the bosonic diagrams do not depend on the top

quark. On the other hand, there is a dependence on the Higgs boson mass, which is not a

fixed parameter and can assume a broad range of values. Due to complexity of the problem

with several hundred diagrams and many more different algebraic integral structures, the

calculation cannot be performed in a straightforward way with any known computational
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method. Here the task is approached by using an expansion in the various parameters in

order to obtain a result expressed through single scale integrals, which have to be evaluated

numerically in a final step.

In a first step, we apply an expansion in the difference of the masses of the W and

Z bosons, where the expansion parameter is just s2
W. Since there are diagrams where

there is a threshold when MW = MZ, the appearance of divergences at higher orders in the

expansion is inevitable. In this case, we apply the method of expansions by regions, see [62].

In this approach, one analyzes the momentum regions which can contribute to the integral

and expands the integrand in each region with a different expansion parameter. The two

regions that contribute to the result come from the ultrasoft momenta, q1,2 ∼ s2
WMZ, and

hard momenta, q1,2 ∼ MZ, where q1,2 are the loop momenta. Then the reduction to the

set of master integrals proceeds with Integration-By-Parts identities [48] solved with the

Laporta algorithm [54] as implemented in the IdSolver library [56].

The MH dependence is treated in two regimes. For low values of MH an expansion in

the mass difference between MH and MZ is used, with the expansion parameter defined to

be

s2
H = 1 − M2

H

M2
Z

, (4.1)

where this time no non-trivial thresholds are encountered. It is found that a good precision

is achieved by performing the expansion to the sixth order in s2
W and s2

H. The second regime

is for large values of MH À MZ, where a large mass expansion [62] is used.

The resulting single scale master integrals are treated with various methods, usually

with two or three different ones for test purposes. Most integrals can be obtained with

numerical integrations based on dispersion relations as described in section 3.2. The ad-

vantage of this method is that with reasonable investment of computer time, it can be

pushed to high precision, which is required since large numerical cancellations are observed

between individual integrals. Diagrams of simpler topologies can also be evaluated with

differential equations [63, 64] and large mass expansions. For more complicated topologies,

Mellin-Barnes representations are employed, using the MB package [59], see also [60, 61].

After simplification, the Mellin-Barnes representations can be evaluated by numerical in-

tegrations or infinite series. In principle, this method could be used for all scalar integrals,

however, depending on the mass configuration, the integration and/or the series evaluation

does not converge. The convergence behavior can be improved by rotating the integration

contours into the complex plane, but this also solves the problem only in a few cases.

Whenever possible the results were cross-checked with sector decomposition [65].

The reduction to master integrals can occasionally can produce spurious 1/(D − 4)

poles in the coefficients of some master integrals. In principle, this problem can be avoided

by choosing an appropriate basis of master integrals, at the expense, however, that some

of these integrals are more complicated. Here, on the other hand, a basis was chosen

that introduces only relatively few spurious poles, but in front of simple integrals. Since

it is advantageous to check the cancellation of divergencies exactly, it was thus necessary

to evaluate the finite pieces of some master integrals analytically. These integrals are

presented in Ref. [66].
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As a final algebraic check of the whole procedure, the cancellation of the gauge pa-

rameter dependence in a general covariant Rξ gauge was verified. Due to the enormous

complexity of the intermediate expressions, this test was only possible for the first orders in

the expansion, but nevertheless allowed a non-trivial cross-check between different diagram

topologies.

5. Numerical Results

In order to arrive at a precise prediction for the effective weak mixing angle, the elec-

troweak corrections of one- and two-loop order are combined with one- and two-loop QCD

corrections [16, 17], and leading three-loop corrections of order O(G3
µm6

t ) and O(G2
µαsm

4
t )

[14]. Other higher-order corrections to the rho parameter of order O(G3
µM4

H) [15] and

O(Gµm2
t α

3
s ) [18] are very small (for MH < 1 TeV) and thus not included in the numeri-

cal analysis. The result is expressed as a perturbative expansion in α, not Gµ.Instead, all

higher-order reducible contributions, that arise from terms proportional to ∆α and ∆ρ, are

included explicity at the given loop order in the computation. A finite b quark mass was

retained in the O(α) and O(ααs) contributions, but neglected in all higher-order terms.

In Tab. 2, the effects of the various loop contributions on the vertex form factor ∆κ

are shown for the input parameters in Tab. 1. ∆α is defined as the real part of the shift of

the photon vacuum polarization function Π(q2) between q2 = 0 and q2 = M2
Z that stems

from light fermions,

∆α = Re
{

Πlf(0) − Πlf(M
2
Z)

}

, Π(q2) = Πlf(q
2) + Πrest(q

2). (5.1)

It is important to note that the experimental values for the W and Z boson masses in

Tab. 1 correspond to a Breit-Wigner parametrization with a running width, that have

to be translated to the pole mass scheme used in the loop calculations [4]. In effect,

this translation results in a downward shift [69] of MZ by 34 MeV and MW by 28 MeV,

respectively.

As evident from the table, the fermionic and bosonic contributions to ∆κ are of the

same magnitude. This changes, however, when expressing the result through the Fermi

constant Gµ as input parameter. For this, the corresponding loop corrections, ∆r, to the

W boson mass need to be incorporated,

M2
W

(

1 − M2
W

M2
Z

)

=
πα√
2Gµ

(1 + ∆r) . (5.2)

The inclusion of the corrections to MW lead to an enhancement of the fermionic two-

loop corrections to sin2 θlept
eff , but to a partial cancellation between the bosonic two-loop

corrections in ∆κ and ∆r. The effect of the different loop orders in sin2 θ
lept
eff with Gµ as

input parameter is summarized in figure 8. The figure shows that the contribution from

the fermionic two-loop corrections amount to roughly ∼ 10−3, while the resulting effect of

the bosonic two-loop corrections is about or less than ∼ 10−5, so that the two curves for

O(α + ααs + αα2
s + α2

ferm) and O(α + ααs + αα2
s + α2

ferm + α2
bos) practically overlap.
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Input parameter Value

MW 80.404 ± 0.030 GeV

MZ 91.1876 ± 0.0021 GeV

ΓZ 2.4952 GeV

mt 172.5 ± 2.3 GeV

mb 4.85 GeV

∆α(M2
Z) 0.05907 ± 0.00036

αs(MZ) 0.119 ± 0.002

Gµ 1.16637 × 10−5 GeV−2

Table 1: Experimental input parameters used in the numerical evaluation; from refs. [67, 68].

MH O(α) O(α2)ferm O(α2)bos O(ααs) O(αα2
s ) O(α2αsm

4
t ) O(α3m6

t ) red.

[GeV] [10−4]

100 413.33 1.07 -0.74 -35.58 -7.25 1.15 0.14 0.69

200 394.02 -0.32 -0.47 -35.58 -7.25 1.90 0.07 0.70

600 354.06 -2.89 0.17 -35.58 -7.25 3.70 0.08 0.72

1000 333.16 -2.61 1.11 -35.58 -7.25 4.53 0.91 0.72

Table 2: Loop contributions to ∆κ with fixed MW as input parameter as a function of the Higgs

mass MH. Here ”red.” corresponds to reducible three-loop contributions stemming from ∆α and

∆ρ.

For the analysis in the following sections, the new full result always includes terms of

the orders α, α2, ααs, αα2
s , α2αsm

4
t and α3m6

t ,

sin2 θlept
eff

∣

∣

full
= sin2 θlept

eff

∣

∣

α+α2+ααs+αα2
s+α2αsm4

t+α3m6
t

. (5.3)

5.1 Comparison with previous results

The most precise previous result for the two-loop electroweak corrections to sin2 θlept
eff was

obtained from the calculation of the next-to-leading term O(G2
µm2

tM
2
Z) in an expansion

for large values of the top-quark mass mt [23]. The impact of the new result, as defined

in eq. (5.3), is shown in Tab. 3 (a) by comparing with the previous result as in the fitting

formula in Ref. [70] and in the implementation of the program Zfitter 5.10 (and later

versions) [35].

A more detailed analysis reveals that there are several sources for the deviations listed

in Tab. 3 (a). First of all, there is the effect of the truncated series expansion in m−2
t , which

was evaluated only up to order m2
t in Ref. [23]. In addition, the genuine light-fermion two-

loop contributions were not included in that work. Moreover, the implementation of the

correction form factor ∆r to the W mass and the parametrization with Gµ instead of α in
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Figure 8: Contribution of several orders of radiative corrections to the effective leptonic weak

mixing angle sin2 θ
lept
eff as a function of the Higgs mass MH. The tree-level value is not shown.

(a)

MH

[

∆ sin2 θlept
eff

]

ZFITTER

[

∆ sin2 θlept
eff

]

[70]

[GeV] [10−4] [10−4]

100 -0.45 -0.40

200 -0.69 -0.72

600 -1.17 -0.94

1000 -1.60 -1.28

(b)

mt,MH ∆[m4
t ] ∆[m2

t ] ∆[m−4
t ]

[GeV]

175,400 20% 4.3% 0.02%

800,1800 5% 1.9% 0.00002%

Table 3: (a) Difference between the new result of eq. (5.3) and the previous result from ref. [23],

as implemented in Zfitter (left column) and from the fitting formula in ref. [70] (right column).

(b) Convergence of the expansion in m−2
t for the two-loop diagrams with top propagators. Here

∆[mk
t ] = [sin2 θlept

eff ](α2mk

t
)/[sin2 θlept

eff ](α2exact) − 1 is the relative difference between the exact and

the expanded result at the given order.

Ref. [23] introduces higher-order terms that can be sizeable. Here it is important to note

that the OSI scheme in Ref. [23], which is the basis for the implementation of these cor-
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rections in ZFITTER, uses the MS definition for ∆ρ, which is numerically larger than the

leading m2
t term, so that the resummation effects of ∆ρMS are rather large. Finally, Zfit-

ter versions before 6.40 use an outdated implementation of the QCD corrections. Since

all these contributions are non-negligible at the current level of precision, it is interesting

to study them separately.

In particular, using the results of section 3.1 the effect of the truncated top-mass

expansion is shown in Tab. 3 (b)2. It turns out that the expansion converges quite well

for realistic values of mt and MH. However, the terms beyond the order m2
t induce a

difference of 4.3% in the two-loop corrections with top-bottom loops, corresponding to a

shift of about 0.2 × 10−4 in sin2 θ
lept
eff , which is roughly a quarter of the total difference

reported in Tab. 3 (a). As a cross-check, also the result for very large values of mt and MH

are shown in Tab. 3 (b), to illustrate that in this case the series converges much faster.

5.2 Error estimate

While the inclusion of the fermionic two-loop corrections is a substantial improvement of

the prediction of sin2 θ
lept
eff in the Standard Model, uncertainties from missing higher order

contributions can still be sizeable. Here we try to give an estimate of the error induced

by these unknown contributions. The most relevant missing higher order contributions are

corrections of the order O(α2αs) beyond the leading m4
t term, O(α3) beyond the leading

m6
t term and O(αα3

s ). Since the final prediction for sin2 θ
lept
eff is based on Gµ as input, the

loop effects in the both quantities ∆r (for the computation of MW) and ∆κ (for the Zl+l−

vertex corrections) need to be considered.

When combining the two form factors, it turns out that there are some cancellations

between the known corrections to MW and the Z vertex. It is expected that similar

cancellations occur when adding an additional QCD loop, since QCD corrections enter

with the same relative sign in the corrections to MW and the Z vertex. Since the dominant

missing higher order effects are contributions with an additional QCD loop, it is assumed in

the following that these cancellations are natural and it is justified to study the theoretical

error of both quantities ∆r and ∆κ in conjunction.

A simple method to estimate the higher order uncertainties is based on the assumption

that the perturbation series follows roughly a geometric progression. This presumption

implies relations like

O(α2αs) =
O(α2)

O(α)
O(ααs). (5.4)

From this one obtains the error estimates in the second column of Tab. 4 for the different

higher order contributions, which are given for a range of the Higgs MH mass between 10

GeV and 1000 GeV. To account for possible deviations from the geometric series behavior,

an ad-hoc overall factor
√

2 was included in all error determined via this method.

Alternatively, the error from a higher-order QCD loop can be assessed by varying the

scale of the strong coupling constant αs or the top-quark mass mt in the MS scheme in

2As a by-product of this comparison, we found a typo in Ref. [45], where a term 3

2
m2

t/(M
2
Zs2

W) log c2
W is

missing in the expression for MH À mt.
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Geometric progression Scale dependence Leading mt terms

O(α2αs) beyond leading m4
t 3.3 . . . 2.8 × 10−5 0.8 . . . 2.1 × 10−5 1.2 . . . 4.3 × 10−5

O(αα3
s ) 1.5 . . . 1.4 0.3 . . . 0.2

O(α3) beyond leading m6
t 2.5 . . . 3.5 0.3 . . . 0.8

Sum 4.4 . . . 4.7 × 10−5

Table 4: Estimation of the uncertainty from different higher order contributions for sin2 θ
lept
eff , with

the quadratic sum of all error sources. Where applicable, two or three different methods for the

error estimate have been used.

the highest available perturbation order. By varying thus the scale µ of mt,MS in the

O(α2) contributions between m2
t/2 < µ2 < 2m2

t one obtains an error estimate for the

O(α2αs) contributions between 0.1 and 3.9 × 10−5, depending on the value of MH for

10 GeV < MH < 1000 GeV. Similarly, by varying αs(µ) in the O(αα2
s ) corrections between

m2
t/2 < µ2 < 2m2

t leads to an error estimate for the O(αα3
s ) contributions of less than 10−6,

see Tab. 4.

An independent third estimate of the error of the O(α2αs) and O(α3) contributions

can be obtained from the existing leading terms in the expansion for large top quark mass.

Experience from the O(α2) corrections suggests that for moderate values of MH, the leading

mt-term and the remaining non-leading terms are of similar order. These contributions are

shown in the last column of Tab. 4.

As evident from the table, all methods give results of similar order of magnitude, while

the geometric progression method tends to lead to the largest error evaluation. The total

estimated error is therefore computed by summing in quadrature the error from different

contributions obtained by this method. It is found to amount to δthsin2 θlept
eff = 4.7× 10−5.

5.3 Parametrization formulae

Following Ref. [26], the numerical results are expressed in terms of a fitting formula, which

reproduces the exact calculation with maximal and average deviations of 4.5 × 10−6 and

1.2 × 10−6, respectively, as long as the input parameters stay within their 2σ ranges and

the Higgs boson mass in the range 10 GeV ≤ MH ≤ 1 TeV. For the sake of comparability

with the result of Ref. [26], the slightly outdated central values for the experimental input

parameters used there are also kept in the formula

sin2 θf
eff = s0 + d1LH + d2L

2
H + d3L

4
H + d4(∆

2
H − 1) + d5∆α

+ d6∆t + d7∆
2
t + d8∆t(∆H − 1) + d9∆αs

+ d10∆Z ,
(5.5)

with

LH = log

(

MH

100 GeV

)

, ∆H =
MH

100 GeV
, ∆α =

∆α

0.05907
− 1,

∆t =
( mt

178.0 GeV

)2
− 1, ∆αs

=
αs(MZ)

0.117
− 1, ∆Z =

MZ

91.1876 GeV
− 1.

(5.6)
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The values of the coefficients for the effective leptonic weak mixing angle sin2 θlept
eff are

given in the second column of Tab. 5. This parametrization includes all relevant known

corrections at this time, as in eq. (5.3).

For some purposes, it is however useful to have a numerical result for the two-loop

electroweak form factors ∆κ and ∆r alone. For ∆κ, the following parametrization provides

a good approximation,

∆κ(α2) = ∆α ∆κ(α) + ∆κ(α2)
rem , (5.7)

∆κ(α2)
rem = k0 + k1LH + k2L

2
H + k3L

4
H + k4(∆

2
H − 1) + k5∆t + k6∆

2
t + k7∆tLH

+ k8∆W + k9∆W ∆t + k10∆Z ,

(5.8)

with

∆W =
MW

80.404 GeV
− 1. (5.9)

From a fit to the exact computation, the coefficients are obtained as

k0 = −0.002711, k1 = −3.12 × 10−5, k2 = −4.12 × 10−5, k3 = 5.28 × 10−6,

k4 = 3.75 × 10−6, k5 = −5.16 × 10−3, k6 = −2.06 × 10−3, k7 = −2.32 × 10−4,

k8 = −0.0647, k9 = −0.129, k10 = 0.0712.

(5.10)

This reproduces the exact result for ∆κ(α2) with maximal deviations of 1.8 × 10−5 for 10

GeV ≤ MH ≤ 1 TeV and the other input parameters in their 2σ ranges. This error in

∆κ corresponds to an error of 4× 10−6 for sin2 θlept
eff . Since the experimental values for the

top quark mass and the W -boson mass might change substantially with future updates

of measurements from the Tevatron and the LHC, it is useful to see how well the fitting

formula works for larger ranges of these two parameters. If the top quark mass and the W -

boson mass vary within 4σ of their current experimental uncertainty, the formula eq. (5.7)

is still accurate to 3.6 × 10−5, corresponding to an error of 8 × 10−6 for sin2 θlept
eff .

Similarly, for ∆r, the numerical result can be cast into the form

∆r(α2) = (∆α)2 + 2∆α ∆r(α) + ∆r(α2)
rem , (5.11)

∆r(α2)
rem = r0 + r1LH + r2L

2
H + r3L

4
H + r4(∆

2
H − 1) + r5∆t + r6∆

2
t + r7∆tLH

+ r8∆W + r9∆W ∆t + r10∆Z ,

(5.12)

where

r0 = 0.003354, r1 = −2.09 × 10−4, r2 = 2.54 × 10−5, r3 = −7.85 × 10−6,

r4 = −2.33 × 10−6, r5 = 7.83 × 10−3, r6 = 3.38 × 10−3, r7 = −9.89 × 10−6,

r8 = 0.0939, r9 = 0.204, r10 = −0.103.
(5.13)

This agrees with the exact result within maximal deviations of 2.7 × 10−5 for 10 GeV

≤ MH ≤ 1 TeV and the other input parameters in their 2σ ranges, corresponding to an

error of 0.4 MeV for MW and 8 × 10−6 for sin2 θlept
eff . For the top quark mass and the

W -boson mass varying in their 4σ ranges, the formula eq. (5.11) is accurate to 4.3× 10−5,

corresponding to an error of 0.65 MeV for MW and 12.5 × 10−6 for sin2 θlept
eff .
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f e, µ, τ νe,µ,τ u, c d, s

s0 0.2312527 0.2308772 0.2311395 0.2310286

d1 [10−4] 4.729 4.713 4.726 4.720

d2 [10−5] 2.07 2.05 2.07 2.06

d3 [10−6] 3.85 3.85 3.85 3.85

d4 [10−6] −1.85 −1.85 −1.85 −1.85

d5 [10−2] 2.07 2.06 2.07 2.07

d6 [10−3] −2.851 −2.850 −2.853 −2.848

d7 [10−4] 1.82 1.82 1.83 1.81

d8 [10−6] −9.74 −9.71 −9.73 −9.73

d9 [10−4] 3.98 3.96 3.98 3.97

d10[10
−1] −6.55 −6.54 −6.55 −6.55

Table 5: Coefficient of the fitting formulae eq. (5.5) for different final states f f̄ .

5.4 Results for other fermion flavors

The results presented in the previous sections and in Refs. [26, 27] give the effective weak

mixing angle sin2 θ
lept
eff defined for the leptonic Zl+l− vertex. For the Zff̄ vertex with

other light flavors f = ν, u, d in the final state, there are small but non-zero differences

with respect to the leptonic effective weak mixing angle. In this section, results are given

for sin2 θf
eff for different final state fermions except b-quarks. For the bb̄ final state, the

two-loop electroweak corrections are still missing, since they involve new topologies with

additional top-quark propagators.

Since the numerical effect of the fermionic electroweak two-loop corrections is much

larger than the corresponding bosonic contributions, only the fermionic O(α2) diagrams

are taken into account. As before, the complete one-loop corrections and the (flavor in-

dependent) contributions of order O(ααs), O(αα2
s ), O(α2αsm

4
t ) and O(α3m6

t ) are also

included.

As before, the numerical results are expressed through the parametrization in eq. (5.5),

which reproduces the exact calculation with maximal deviations of 4.5 × 10−6, when the

input parameters stay within their 2σ ranges and the Higgs boson mass in the range 10

GeV ≤ MH ≤ 1 TeV. The values of the coefficients for the various final state flavors are

listed in Tab. 5.

5.5 Implementation into global Standard Model fits

The fermionic two-loop corrections and some higher-order contributions as listed in eq. (5.3)

are implemented in the current version 6.42 of the program Zfitter [35, 71], which is

widely used for global fits of the Standard Model to electroweak precision data [67]. Due
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to the complexity of the two-loop computation, the implementation of the exact result was

not possible, so that instead the numerical fitting formula eq. (5.5) was included in the

code. More details can be found in Ref. [71].

The fitting formula has been incorporated exactly only for the leptonic effective weak

mixing angle sin2 θ
lept
eff , i.e. for the Zl+l− vertex. Results for other light flavors f =

u, d, c, s, ν in the final state are implemented in an approximate way, which reproduces

the complete results of section 5.4 within an error of about 10−5 for f = u, d, c, s and

2 × 10−5 for f = ν.

For the bb̄ final state, no two-loop electroweak corrections beyond the leading m4
t are

included in Zfitter 6.42. They shall become available in a future version. However,

the current version 6.42 was adjusted with respect to previous version to include complete

two-loop corrections in the initial state vertex for the process e+e− → (Z) → bb̄, see

Refs. [71, 72] for details.

6. Conclusion

In this paper, the evaluation of the complete two-loop contributions to the effective weak

mixing angle has been described, expatiating the computational methods and the quanti-

tative implications of the new result.

It was shown how the effective weak mixing angle can be defined at next-to-next-to-

leading order through the vector and axial-vector couplings of the Z-boson. The computa-

tion of the vertex loop diagrams using two independent techniques for the fermionic part

and a combination of several computational methods for the bosonic part was elucidated

in detail.

Numerical results for the effective weak mixing angle for different final state flavors

were given in terms of accurate numerical parameterizations, which are valid for Higgs

masses up to 1 TeV. The new result has been compared in detail with a previous result

obtained by an expansion in powers of mt up to next-to-leading order.

Furthermore, the remaining theoretical uncertainties due to unknown higher orders

were analyzed and an overall uncertainty of the effective leptonic weak mixing angle

sin2 θ
lept
eff of 4.7 × 10−5 was estimated.

Electroweak precision data allows very precise tests of the Standard Model at the quan-

tum level and puts the strongest constraints on the Higgs boson mass and new physics.

With the completion of the electroweak two-loop corrections, the accuracy of the elec-

troweak precision test was significantly enhanced, with theoretical uncertainties now under

much better control.
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